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Magnetic Monopole Interactions: Shell Structure of
Meson and Baryon States
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It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e
may be interacting with a c-quark’s magnetic dipole moment to produce Zeeman
splitting of meson states. The mass M, = 2397 MeV of the monopole is in contrast
to the 10'*-GeV monopoles of grand unification theories (GUT). It is shown
that shell structure of energy E, = My+3inM,+- - - exists for meson states. The
presence of symmetric meson states leads to the identification of the shell
structure. The possible existence of the 2397-MeV magnetic monopole is shown
to quantize quark masses in agreement with calculations of quantum chromody-
namics (QCD). From the shell structure of meson states, the existence of two
new mesons is predicted: 7(1814+50MeV) with IS(J7)=0"(0"") and
7.(3907 £100 MeV) with J¥C =0~*, The presence of shell structure for baryon
states is shown.

1. INTRODUCTION

There is evidence (Akers, 1985) that a low-mass magnetic monopole
of Dirac charge g =(137/2)e may be Zeeman-splitting meson states. This
evidence is presented in Section 2. In Section 3 we present evidence of shell
structure and quantization of quark masses; these masses are not accounted
for until now. While grand unification theories (GUT) predict massive
10'°-GeV monopoles (Liss et al.,, 1984), few theorists study low-mass mag-
netic monopoles, though early work indicated a monopole mass of 2.5M,
(Amaldi, 1968). No improvement on the classical Dirac mass has occurred
since 1968, attention having focused on the massive 10'°-GeV monopoles
of GUT. Lochak (1985) has studied the low-mass end of the spectrum and
found a massless monopole from the Dirac wave equation. In this paper,
we return to the Dirac mass of 2397 MeV and find evidence to support the
existence of the magnetic monopole.
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2. ZEEMAN SPLITTING

First, we recall that the mass of the magnetic monopole can be estimated
on the basis of magnetic self-interaction (Barut, 1979; Salam and Tiomno,
1959; Stephenson, 1957):

2
g
M==m,
= M
where g is the magnetic charge of the monopole, e is the electric charge,
and m, is the electron mass. The quantization condition (Dirac, 1931) is

ge =inhc, n=0,=x1,.... (2)

The trivial case n =0 corresponds to a massless magnetic monopole whose
properties can be derived from the Dirac equation (Lochak, 1985). We
concern ourselves with the first magnetic monopole mass for n=1:

M =(137/2)’m, = 2397 MeV 3)

which is the Dirac mass. We shall reconcile the existence of a 2397-MeV
monopole with grand unification theories. This development will be dis-
cussed in Section 4 on the theory of strong forces.

Drawing from the abundance of evidence for charmonium states
(Particle Data Group, 1984), we plot the energy levels for I =0 mesons in
Figure 1. The charmonium states are located above the 2397-MeV Dirac
mass, which is indicated by the dashed line. Below the M;=2397-MeV
magnetic monopole, we find energy levels symmetric to the charmonium
states. For clarity not all isoscalar mesons are shown in Figure 1. Figure 4
shows all the I =0 mesons. We note the unmistakable symmetry, apparently
about M,=2397 MeV. The particle masses are shown in parentheses, and
the absolute value of the particle-monopole mass difference is in brackets.

Before we discuss Figure 1, a number of comments can be made. First,
the evidence of Figure 1 does not exclude the existence of mesons heavier
than 4.8 GeV, twice the monopole mass. The monopole also has heavier
masses: 9.6 GeV for n=2,.... The model may thus be extended to the
upsilon family.

Second, the symmetry of Figure 1 is not found for nonisoscalar mesons,
because of the limits of present experimental data. However, the symmetry
of Figure 1 reveals shell structure (see Section 3), which the nonisoscalar
mesons satisfy systematically. Finally, one could argue from a partial wave
analysis that there is a continuum of states and that the symmetry claimed
would disappear with a more complete knowledge of the meson spectrum.
Such an argument does not completely remove the symmetry of Figure 1,
but it does introduce an asymmetry into the spectrum. This slight asymmetry
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Fig. 1. Combined meson spectrum for isospin I =0. The magnetic monopole of mass M, is
indicated by the dashed line. The arrows point to shell states calculated to first-order approxima-
tion, equation (6). The dotted line represents a missing meson at 1814 MeV. We predict another
meson at 3907 MeV, as represented by the dotted line.

can be explained from the fact that even in atomic systems there is a slight -
asymmetry in the Zeeman splitting of the energy levels (Anderson, 1971).

We propose that the symmetry of meson states about M, = 2397 MeV
is due to Zeeman splitting from a quark’s magnetic dipole moment interact-
ing with the monopole’s B field. The energy of the Zeeman splitting is given
by the relation 7

AE =gm;uB (4)

where the gm; factors are shown in Table I and w is the magnetic dipole
moment of a quark. We clarify the nature of the Zeeman effect by defining
the relationship between a charmed meson’s interactions and a normal
meson’s interactions with a magnetic monopole. The orientations of mag-
netic dipole moments p, and p. with respect to the monopole are given by
the relations

AE =—p.- B for a c-quark (5a)
AE = —p, - B for an s-quark (5b)
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Table I. Zeeman Energy Splitting for p and s States

AE =gm;
Orbital states Jj m; g (in units of uB)
P 3 3 5 2
P 3 5 5 3
P 3 -3 3 -3
P 2 2 3 3
P 3 -3 % -3
s 1 1 2 1
s z -3 2 -1

From Table I, gm; =1 for a spin singlet state (mj=%), and gm;=—1 for
m; = —3. For the 71.(2980) — M, mass difference, gm; =1 and the Zeeman
splitting is AE = —p.. * B =2980—2397 = +583 MeV, where p.. = +(2¢/3m.c)
S and B=—(137¢/2r%)#. The meson spectrum is normalized with respect
to the spin singlet state of charmonium, and the experimental gm; factors
are shown in Table I1I. The ratio of the highest p state y(3555) and the s
state 7.(2980) is 1.99, which agrees with the theoretical value of 2 from
Table I. Namely, the ratio [ x(3555) — M,]/[n.(2980) — M,] = 1.99 is in agree-
ment with gm; =2 in the p states for Zeeman splitting. The experimental
gm; factors of Table 1T support the claim for Zeeman splitting in Figure 1.

Table II. Zeeman Splitting for the 1p and 1s States of Charmonium and of the Symmetric

States®
'S, 38, p, *p, *p,
n 1 i 1 1 1
! 0 0 1 1 1
s 0 1 1 1 1
J- 0 1 0 1 2
Intermediate states
ji=1+s 1/2 1/2 3/2 3/2 3/2
1/2 1/2 1/2
: -1/2 -1/2 -1/2
jl=1l-s -1/2 -1/2 -3/2 -3/2 -3/2
Charmonium states above M, =2397 MeV
1.(2980) J(3096) x(3415) x(3510) x(3555)
gm; 1.00 1.20 1.74 1.91 1.99
Symmetric states below M, =2397 MeV
7n(1814) ¢'(1680) £(1300) D(1285) f(1270)
gm, -1.00 -1.22 —1.88 -1.91 -1.93

“Monopole spin s’ =3 (Osborn, 1982).
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Further comment on Table Il is needed. Because the gm; factors vary
from 1.74 to 1.99 in the p states above M,=2397 MeV and from —1.88 to
—1.93 in the p states below M,, we suggest an intermediate L-S and j-j
coupling with a monopole spin s'=3 and j'=1+s,..., j/=1—5" In fact,
the monopole is expected to have a spin (Osborn, 1982). This additional
coupling may account for the additional 1~ mesons and for the slight
asymmetry in the p states of Figure 1.

Moreover, from the symmetry of Figure 1, we note the mass differences
in brackets are very close for each J”° bin. The numbers in brackets are
the absolute values of the particle-monopole mass difference. In the p states,
there is a slight asymmetry about the monopole mass. Choi (1985) has
suggested that the symmetry about the monopole mass M, may be broken,
since the spin splitting scales of the charmonium and the low-mass meson
systems are slightly different in general. This has to be considered as a
possible alternative to the intermediate coupling scheme mentioned above,
The intermediate coupling scheme seems to be the more reasonable explana-
tion of the slight asymmetry, because a similar asymmetry for Zeeman
splitting exists in atomic systems (Anderson, 1971).

In studying Figure 1, we notice that there are two missing 1 mesons,
as indicated by the dotted lines in the J7 =07" bin. The 7(1814) meson
is predicted to exist, because it is symmetric with respect to %.(2980). Thus,
we predict the existence of a new n meson at 1814+ 50 MeV with I°¢(J7¢) =
0*(0™™) and another charmonium singlet state 7. at 3907 =100 MeV. These
masses are determined by comparison with their symmetric states. Hence,
the singlet 7.(3907) is a reflection of 7(958).

In sum, the extent to which the energy splittings in equation (4) are
based upon the coupling of a quark to a magnetic monopole remains to be
seen. The theory of magnetic monopoles is far enough along that one could
explore concrete Schrodinger equations, although the calculations are some-
what complex (Akers and Akers, 1984; Sivers, 1970).

3. SHELL STATES

In the meson spectrum of Figure 1, the energy levels are grouped in
shell states according to the first-order approximation:

E,= M,+inM,, n=0,+1,... (6)

M, =2397 MeV is the monopole mass from equation (3). The 1'S, and 1°S,
states of charmonium appear at the E, = M,+3M, level. Likewise, the 2'S,
and 28, states also appear at the E,= M,+2M, shell state. On the other
hand, the 3'S, and 3°S, levels fall below the E; = M,+32M, shell state. This
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is expected since equation (6) is a first-order approximation. The correct
shell state energy is given by the relation

Ey= M,+3M,— 1M, =3895 MeV (7

Thus, the shell state energy is measured from the spectrum of Figure 1. For
those mesons below the Dirac mass, the shell state energies have negative
values for n.

A question arises as to whether the symmetry in Figure 1 is due to
chance. A statistical analysis of the spin-singlet and spin-triplet states reveals
that the symmetry is not due to chance. In Table IIl, nine of the meson
masses are within one standard deviation of the energy levels. Two mesons,
7(1275) and ¢(1020), are within two standard deviations of the energy
levels. Hence, there is a symmetry of the mesons in Figure 1.

From the shell structure of equation (6), a relation can be derived
between the monopole mass M, and quark masses. The mass of a quark is
given by those meson states that ideally satisfy equation (6):

E,=m;+m; (8)

where E, is the approximation (6) and m, is the mass of a quark g. For
the c-quark, m,+m,= E, or m,=3M,. The next meson state is given by
¢ =55 for m,+m;=E, or my=31M,. Ideally » gives the meson state for
m,+m;= E; or m,=%M,. The results for all quark masses are calculated
in Table IV. The o is not a pure uit or dd state; since © =2 Y*(uii+dd),
m, = (1/8v2) M, would be more exact. In Table IV, the magnetic monopole
model is compared with several quantum chromodynamic (QCD) models.
The QCD calculations of (Lizzi and Rosenzweig (1985) are compared with
the magnetic monopole model. Moreover, the model is compared with the

Table IIL. Statistical Analysis of Spin-Singlet and Spin-Triplet States

Energy level AE AE
(MeV) is, (MeV) 38, (MeV)
E;=3895.0 3907 -12.0 4030 135.0
E,=3595.5 3590 5.5 3686 90.5
E, =2996.3 2980 16.3 3096 99.7
M,=12397.0 — — — —
E,=1797.8 —_ — 1680 117.8
E,=1198.5 1275 76.5 1020 178.5
E,= 898.8 958 59.1 783 1159
Mean 29.1 1229

o 373 313
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Table IV. The Magnetic Monopole Model Fits to the Quark Model
of Quantum Chromodynamics (QCD)

Magnetic monopole model QCD model
m, 4 = §My=299.5 MeV 300,% 330,% 270 MeV*

m, = 1M, =599 MeV 450, 450,° 630 MeV*

m, =3iM,=1.2GeV 1.2GeV©

my= M;=2.4GeV —

m, =2M,=4.79 GeV 4.78 GeV°®

“Regge trajectories analysis of QCD confinement model (Lizzi and
Rosenzweig, 1985).

bQCD spin-dependent forces model (Choi, 1985, and personal com-
munication).

‘QCD Gupta-Radford model (Gupta et al., 1985).

4 Nonrelativistic potential model (Henriques, 1983).

QCD spin-dependent forces model of Choi (1985), the QCD Gupta-
Radford model (Gupta et al., 1985), and a nonrelativistic potential model
(Henriques, 1983). These quark models agree very well with the magnetic
monopole model. The existence of a magnetic monopole implies the quantiz-
ation of quark masses:

m, s =300 MeV, m;=600MeV, m.=12GeV, m,=48GeV (9)

No research has ever before accounted for quark masses. QCD calculations
are long and difficult to perform, whereas the quark masses are easily
obtained from the shell structure, equation (6).

Further analysis of the shell structure can be applied systematically to
nonisoscalar mesons as well. From the shell state energies of equation (6),
the meson masses are plotted for isospins I =0, 3, and 1. These meson
masses are shown in Figures 2-4 and are plotted against |n| of equation (6)
for convenience. For I = 1 mesons of Figure 2, there are clearly three groups
of particles, or shell states, at |n|=0, 1, and 2. These groups of particles
are separated by gaps as indicated. At |n|=0, the I =1 mesons have large
values of angular momentum (J =1, ..., 6) near the monopole mass M,.
At |n|=1, the mesons have J =0, ..., 3, whereas at |n|=2,J=0,...,2. The
linearity of equation (6) breaks down at |n|=3 as mentioned earlier. For
the I =3 mesons of Figure 3, the same pattern of large J values appears
near M, for |n| =0, and the shell states appear for |n| =1 and 2. Intermediate
states K* with J” =17 and L with J? =2~ appear between the |n|=1 and
2 shell states. For the I =0 mesons of Figure 4, there is the same pattern
of shell structure. Intermediate states D(1530), f(1525), i(1440), and
E(1420) appear between the |n|=1 and 2 shell states; these intermediate
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Fig. 2. I=1 meson masses as a function of |n| from equation (6).

states are explainable from Table II. In Table II, the intermediate states
are represented by the couplings j'=1I+s',...,j =1—s'. These intermediate
states are likely from the intermediate coupling for j’. In sum, the shell
structure, equation (6), can be applied to nonisoscalar mesons as well as
to I =0 mesons.

Finally, we look at the possibility of shell structure for baryon states
that depend upon the monopole mass M,. The evidence for this is not very
convincing because of the limited experimental data above the monopole
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mass M;=2397 MeV. The results are shown in Figures 5 and 6, where the
absolute value of the monopole-baryon mass difference is plotted against
baryon mass. In Figure 5, there may be evidence for shell states symmetric
about the Dirac mass. There are clearly groups of particles below the mass
M,. In Figure 6, the evidence is not convincing enough; however, the
particle spectrum is similar to that in Figure 5, with some groups of particles
below M,. Thus, the presence of shell structure for baryon states based on
the monopole mass is not established as yet.
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4. MAGNETOSTRONG THEORY

From the possibility that a low-mass monopole does exist, we shall
attempt to reconcile its existence with grand unification theories (GUT). A
new unification theory of the magnetic and the strong forces is proposed.
The existence of a magnetic monopole is incorporated into the theory.
Magnetostrong theory is the idea that the existence of magnetic monopoles
accounts for the strong forces in nature. In electron-positron annihilation,
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monopole-antimonopole pairs may be created:

ete >gTg” (10)

If the monopole-antimonopole pair is created from vacuum, AE =2M,,
the mean lifetime is At~ #/AE =1.4x 107>’ sec. The hadron interactions
are 100 times longer at ¢ ~ 107> sec. Therefore, the creation of monopoles
involves superstrong forces, as its coupling constant suggests; e, = g°/ #ic =
34.25 (for n=1). Hence, the strength of the magnetic charge may account
for the confinement of quarks (Daniel et al., 1980).

The nature of the strong coupling constant a, can be derived from
quantum mechanical principles. By considering the interactions as in
equation (10), «, is calculated from the Zeeman splitting. The interaction
energy is AE = —p; - B, where p; =pn,+ s is the magnetic dipole moment
of the system; taking the reduced mass 3M into account, we have

Qh 137 1L+2S . (a1
————— — tr
2Myc 2 H P

AE =
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where Q =2e/n. The strong coupling constant is then
Q*(137¢)* 1
T he? he
and a,=1.0, 0.25, 0.11,... for n=1,2,.... For n=0, a,~»© at the low-
energy limit, as expected. The center-of-mass energy is given by
E =2M =2Mgyn* (13)

In Figure 7, the strong coupling constant is plotted as a function of the
center-of-mass energy. From the figure, we note that the magnetostrong
theory agrees with several experimental measurements (Zhu, 1985). At low
energies, there is need for further measurements to confirm the theory or
to determine if the theory needs improvement in modeling.

(12)

5. CONCLUSION

Finally, we reconcile grand unification theory with a low-mass magnetic
monopole. We evaluate the electroweak theory’s coupling constant ay, and
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the magnetostrong theory’s «, in equation {12) together. The weak coupling
constant is given by (Perkins, 1982)

aw =1.02%x107(My/M,)’ (14)

where M, =0.938 GeV. For o, = aw, My =73.4 GeV. For n =4, a, =0.0625
and E =76.7 GeV. My, and E agree to within 4% . Hence, the strong, weak,
and electromagnetic couplings converge at the intermediate vector boson
mass My. The model presented in this paper predicts grand unification at
the low-energy end of the spectrum. This is to be expected, since we believe
the magnetic monopole to have the classical Dirac mass instead of the
massive 10’® GeV of grand unification theories. The next generation of
particle accelerators should decide the issue concerning the existence of
magnetic monopoles and their mass.



1294 Akers

ACKNOWLEDGMENT

Part of the research in this paper was presented in a talk at the Annual
Meeting of the Division of Particles and Fields, University of Oregon,
Eugene, Oregon, August 15, 1985.

REFERENCES

Akers, D. (1985). In Proceedings of the Oregon Meeting, Rudolph C. Hwa, ed., World Scientific,
Singapore.

Akers, D., and Akers, D. O. (1984). Physical Review D, 29, 1026.

Amaldi, E. (1968). In Old and New Problems in Elementary Particles, G. Puppi, ed., Academic
Press, New York.

Anderson, E. (1971). Modern Physics and Quantum Mechanics, W. B. Saunders, Philadelphia.

Barut, A. O. (1979). Physical Review Letters, 42, 1251.

Choi, J. B. (1985). Physical Review D, 31, 201.

Daniel, M., Lazarides, G., and Shafi, Q. (1980). Nuclear Physics B, 170, 156.

Dirac, P. A. M. (1931). Proceedings of the Royal Society of London, Series A, 133, 60.

Gupta, S., Radford, S., and Repko, W. (1982). Physical Review D, 26, 3305.

Henriques, A. B. (1983). Zeitschrift fiir Physik C, 18, 213.

Liss, T. M., Ahlen, S. P., and Tarle, G. (1984). Physical Review D, 30, 884.

Lizzi, F., and Rosenzweig, C. (1985). Physical Review D, 31, 1685.

Lochak, G. (1985). International Journal of Theoretical Physics, 24, 1019.

Osborn, H. (1982). Physics Letters, 115B, 226.

Particle Data Group. (1984). Review of Modern Physics, 56, S181.

Perkins, D. H. (1982). Introduction to High Energy Physics, Addison, London.

Salam, A., and Tiomno, J. (1959). Nuclear Physics 9, 585.

Sivers, D. (1970). Physical Review D, 2, 2048.

Stephenson, G. (1957). Nuovo Cimento, 5, 1009.

Zhu, R. (1985). In Proceedings of the Oregon Meeting, Rudolph C. Hwa, ed., World Scientific,
Singapore.



